II Séries à termes réels positifs

Lorsqu'une série $\sum u_n = (u, U)$ est associée à une suite u à valeurs dans \mathbb{R}_+ , la suite U de ses sommes partielles est croissante en raison de la relation suite-série :

$$\forall n \in \mathbb{N}, \ U_{n+1} - U_n = u_{n+1} \geqslant 0.$$

Il en résulte le théorème simple mais fondamental:

Théorème

Pour que la série $\sum u_n$ à termes réels positifs soit convergente il faut et il suffit que la suite $U = \left(\sum_{k=0}^{n} u_k\right)_{n \in \mathbb{N}}$ de ses sommes partielles soit majorée.

II.1 Les règles de comparaison : \mathcal{O} , $o \sim$

Corollaire Règle de domination

Soient u et v deux suites réelles qu'il existe un rang N et un réel positif M vérifiant

$$\forall n \geqslant N , \ 0 \leqslant u_n \leqslant M v_n$$

Si la série $\sum u_n$ est divergente, il en est de même pour la série $\sum v_n$. Si la série $\sum v_n$ est convergente, il en est de même pour la série $\sum u_n$.

- On dit qu'une suite u à termes réels positifs est dominée par une suite à termes réels positifs v lorsqu'il existe un réel M tel que pour tout $n \in \mathbb{N}$, $0 \leq u_n \leq Mv_n$. Cette relation entre suites réelles positives se note $u_n = \mathcal{O}(v_n)$: La relation de domination \mathcal{O} n'est pas un ordre sur l'ensemble des suites réelles positives mais c'est une relations réflexive et transitive.
- On dit que la suite réelle u est négligeable devant la suite réelle v lorsqu'il existe une suite réelle ε convergente vers 0 telle que $u = \varepsilon v$. Cette relation entre suites réelles $u = (u_n)_{n \in \mathbb{N}}$ et $v = (v_n)_{n \in \mathbb{N}}$ se note $u_n = o(v_n)$.

On dit que la suite réelle u est équivalente à la suite réelle v lorsque $u_n - v_n = o(v_n)$ ce que l'on écrit indifféremment $u_n = v_n + o(v_n)$ ou $u_n \sim v_n$. On vérifie que la relation ainsi définie sur l'ensemble $\mathbb{R}^{\mathbb{N}}$ des suites réelles est réflexive, symétrique et transitive, c'est pourquoi on l'appelle relation d'équivalence. Un développement limité de u_n lorsqu'il est possible donnera ainsi un équivalent simple de u_n , pour lequel la règle d'équivalence ci-dessous permet de conclure quant-à la nature de $\sum u_n$.

Corollaire Règle d'équivalence

Soient u et v deux suites réelles positives telles que $u_n \sim v_n$. Alors les séries associées $\sum u_n$ et $\sum v_n$ sont de même nature (du point de vue de la convergence).

Page 1 Michel Lepez www.klubprepa.net ©EduKlub S.A. Tous droits de l'auteur des œuvres réservés. Sauf autorisation, la reproduction ainsi que toute utilisation des œuvres autre que la consultation individuelle et privée sont interdites.

SÉRIES NUMÉRIQUES OU VECTORIELLES

Partie II : Séries à termes réels positifs

En effet lorsque $u_n \sim v_n$ on a aussi $u_n = \mathcal{O}(v_n)$ et $v_n = \mathcal{O}(u_n)$. Voici quelques exemples simples mais utiles (séries de Riemann):

$$U_{n+1} - U_n = \ln\left(1 + \frac{1}{n}\right) \sim \frac{1}{n}$$
 (1.3)

Donc la série harmonique $\sum \frac{1}{n}$ diverge.

- Pour tout réel $\alpha \leq 1$ et tout $n \in \mathbb{N}^*$, $0 < \frac{1}{n} \leq \frac{1}{n^{\alpha}}$ Donc par la règle de domination $\sum \frac{1}{n^{\alpha}}$ diverge lorsque $\alpha \leq 1$.
- Pour tout réel $\alpha > 1$ la suite de terme général $U_n = \frac{1}{n^{\alpha 1}}$ converge (vers 0) donc la série de terme général $U_{n+1} U_n$ est convergente. Un développement limité quand n tend vers l'infini donne

$$U_{n+1} = U_n \left(1 + \frac{1}{n} \right)^{1-\alpha} = U_n + \frac{1-\alpha}{n^{\alpha}} + o\left(\frac{1}{n^{\alpha}}\right)$$

soit encore

$$U_{n+1} - U_n \sim \frac{1 - \alpha}{n^{\alpha}} \tag{1.4}$$

La règle d'équivalence pour les série à termes positifs montre ainsi que la série $\sum \frac{1}{n^{\alpha}}$ est convergente lorsque $\alpha > 1$.

- RÈGLE DE RIEMANN : Soit u une suite réelle telle qu'il existe un réel non nul M et un réel α vérifiant $u_n \sim \frac{M}{n^{\alpha}}$. La série $\sum u_n$ est convergente si et seulement si $\alpha > 1$.
- Sommation des relations de domination, de négligeabilité et d'équivalence : Soient u et v deux suites réelles positives telles que $u_n = \mathcal{O}(v_n)$. Alors $U_n = \mathcal{O}(V_n)$, c'est à dire $\sum_{k=0}^n u_k = \mathcal{O}\left(\sum_{k=0}^n v_k\right)$. Si $u_n = o(v_n)$ et si $\sum u_n$ diverge, alors $U_n = o(V_n)$. Enfin si $u_n \sim v_n$ et si $\sum u_n$ diverge, alors $U_n \sim V_n$.

Soient u et v deux suites réelles positives telles que $u_n = \mathcal{O}(v_n)$ et la série $\sum v_n$ soit convergente. Alors $\sum_{k=n+1}^{\infty} u_k = \mathcal{O}\left(\sum_{k=n+1}^{\infty} v_k\right)$. Si $u_n = o(v_n)$ alors $\sum_{k=n+1}^{\infty} u_k = o\left(\sum_{k=n+1}^{\infty} v_k\right)$.

Enfin si
$$u_n \sim v_n$$
 alors $\sum_{k=n+1}^{\infty} u_k \sim \sum_{k=n+1}^{\infty} v_k$.

Par exemple la sommation des relations d'équivalence (1.3) donne

$$\ln n \sim \sum_{k=1}^{n} \frac{1}{k} \tag{1.5}$$

Page 2 Michel Lepez www.klubprepa.net ©EduKlub S.A. Tous droits de l'auteur des œuvres réservés. Sauf autorisation, la reproduction ainsi que toute utilisation des œuvres autre que la consultation individuelle et privée sont interdites.

SÉRIES NUMÉRIQUES OU VECTORIELLES

Partie II : Séries à termes réels positifs

La sommation des relations d'équivalence (1.4) pour $\alpha < 1$ donne

$$\frac{n^{1-\alpha}}{1-\alpha} \sim \sum_{k=1}^{n} \frac{1}{k^{\alpha}} \tag{1.6}$$

De même la sommation des relations d'équivalence (1.4) pour $\alpha > 1$ donne

$$\frac{1}{(\alpha - 1)n^{\alpha - 1}} \sim \sum_{k = n + 1}^{\infty} \frac{1}{k^{\alpha}} \tag{1.7}$$

II.2 Comparaison à une série géométrique

Une série numérique géométrique a pour terme général $u_n = u_0 r^n$ où le réel non nul r est la raison de u. Pour $r \in \mathbb{R} \setminus \{1\}$, $U_n = \sum_{k=0}^n u_k = u_0 \frac{1-r^{n+1}}{1-r}$. Une série géométrique non nulle est convergente si et seulement si sa raison r vérifie |r| < 1. Lorsque cette condition est vérifiée $\sum_{k=0}^{\infty} u_k = \frac{u_0}{1-r}$. Une série géométrique non nulle $\sum u_n$ est caractérisée par la relation $\frac{u_{n+1}}{u_n} = r$.

Proposition

Si u et v sont deux suites réelles à termes strictement positifs et si, à partir d'un certain rang, $\frac{u_{n+1}}{u_n} \leqslant \frac{v_{n+1}}{v_n}$ alors $u_n = \mathcal{O}(v_n)$.

En particulier lorsque v est une suite géométrique, on a la

Proposition Règle de d'Alembert

Si u est une suite réelle à termes strictement positifs et s'il existe un réel r < 1 tel qu'à partir d'un certain rang $\frac{u_{n+1}}{u_n} \leqslant r$, alors $\sum u_n$ est convergente et $\sum_{k=n+1}^{\infty} u_n = \mathcal{O}(r^n)$.

- I lorsque $z \in \mathbb{C}^*$ la règle de d'Alembert s'applique pour $\sum \frac{|z|^n}{n!}$ (ici $\ell=0$) si bien que pour tout $z \in \mathbb{C}$ la série numérique $\sum \frac{z^n}{n!}$ est absolument convergente donc convergente. On appelle sa somme exponentielle de z.
- Eorsque la suite u à termes strictement positifs est telle qu'à partir d'un certain rang N, $\frac{u_{n+1}}{u_n} \geqslant 1$, la suite $(u_n)_{n\geqslant N}$ est croissante donc la série $\sum u_n$ est grossièrement divergente.

Page 3 Michel Lepez www.klubprepa.net ©EduKlub S.A. Tous droits de l'auteur des œuvres réservés. Sauf autorisation, la reproduction ainsi que toute utilisation des œuvres autre que la consultation individuelle et privée sont interdites.

II.3 Série et intégrale de fonction positive et décroissante

Théorème

Soit f une fonction continue par morceaux sur $[0, +\infty[$ à valeurs dans $[0, +\infty[$ et décroissante. La série de terme général $v_n = f(n) - \int_n^{n+1} f$ est convergente. En particulier la série de terme général $u_n = f(n)$ est convergente si et seulement si f est intégrable sur $[0, +\infty[$.

En effet cela résulte directement de l'encadrement $0 \le v_n \le u_n - u_{n+1}$ et du théorème de majoration des sommes partielles puisqu'alors $V_n = \sum_{k=0}^n v_k \le u_0$.

Par exemple pour $f(t) = \frac{1}{t+1}$ le théorème ci-dessus permet de préciser l'équivalence (1.5) par la convergence de la suite de terme général $V_n = \sum_{k=0}^n \frac{1}{k+1} - \ln(n+2)$. La limite de cette suite s'appelle constante d'Euler et se note γ . On a ainsi un développement limité à l'ordre 0 de la somme de la série harmonique :

$$\sum_{k=1}^{n} \frac{1}{k} = \ln n + \gamma + o(1) \tag{1.8}$$

Pour $f(t) = \frac{1}{(t+2)\ln^{\alpha}(t+2)}$, f est intégrable sur $[0, +\infty[$ si et seulement si le réel α est strictement supérieur à 1. Le théorème ci- dessus montre que la série de terme général $\frac{1}{n\ln^{\alpha}n}$ est convergente si et seulement si $\alpha > 1$.

Page 4 Michel Lepez www.klubprepa.net ©EduKlub S.A. Tous droits de l'auteur des œuvres réservés. Sauf autorisation, la reproduction ainsi que toute utilisation des œuvres autre que la consultation individuelle et privée sont interdites.